This pdf is an excerpt from

Stephen Johnson on Digital Photography

and is provided here as a source of information and encouragement to purchase the book.

Stephen Johnson Photography

650 355-7507
email: info@sjphoto.com
webpage: www.sjphoto.com

Book link:

Book Purchase link:
http://order.kagi.com/cgi-bin/store.cgi?storeID=EL7&&&=products01
Stephen Johnson "applies science to nature and creates art."
-LIFE Magazine
Contents

Acknowledgments
A Note from the Author

Part 1: Evolutions

Chapter 1: Introduction to Digital Photography
Why Digital Photography?
A Few Beginning Questions
From Light to Pixels
From Pixels to Image
From Black and White to Color
Basic Guide to Digital Cameras
Using Digital Cameras: A Checklist
Computer Image Data and File Types
Different Image Data, Different Image Capabilities

Chapter 2: A History of Electronic Imaging
The Ancestors of Digital Photography
Electronic Imagers
Sky, Spies, and Space
The Evolution of Digital Publishing
Education and Transition: Personal Evolution

Chapter 3: On Photography’s Bleeding Edge
Technology Illuminates California’s Central Valley
The Scanning Camera
The Birth of a Project
A New Way of Seeing
The Magical Digital Bus
Digital Panoramics
Digital Infrared
Digital Stereo
Using Digital Imaging for Copying Artwork
The Photographic Projects
A Project Portfolio

Part 2: The Digital Breakthrough

Chapter 4: New Heights of Image Quality
Film Reality vs. Digital Reality

Chapter 5: Process Differences in the Digital Age
Seeing As You Go

Part 3: Input, Light to Silicon

Chapter 6: Sensors, Gray, Color, and Wide
Basic Features of Digital Sensors
Sensors, Black and White
Rendering Color in Photography
The Creation of Electronic Color
High Dynamic Range Photography

Chapter 7: Digital Camera Techniques
Features
Basic Digital Camera Techniques
Multi-Exposure Panoramics Techniques
Multi-Exposure Dynamic Range Expansion
HDR Dynamic Range Expansion
Depth of Field Increase/Decrease
Sensor Artifact Repair
Sensor Noise

Chapter 8: Scanning
Types of Scanners
The Scan As Archive
Scanning Considerations
Basic Principles of Scanning
Common Scanning Controls

Part 4: Techniques of the Digital Darkroom

Chapter 9: Controlling the Digital Image
Adjusting Images for Tone and Contrast
The Histogram
Photoshop’s Densitometer
A Tonal Primer
A Layer Primer
Layer Options and Modes
Levels
Photoshop Curves
Contrast and Curves
Adjustment Layers
Enlarging and Interpolation
Sharpening
Creating Black and White from Color
RAW Files and Adobe Camera Raw
A Camera Raw Workflow
Preservation of Your Data
The Edited Master Archive
Raw Dynamic Range Expansion
Photoshop History

Stephen Johnson on Digital Photography
Chapter 10: Color Correction and Editing 147
 Digital Color Basics 147
 Light and Color 150
 Basic Principles of Color Editing 151
 Hue and Saturation 152
 Using Curves Tool As a Color Editor 153
 Additional Color Controls 154

Chapter 11: Restoration 157
 Avoiding Historical Fiction 157
 Dust Removal 158
 Restoration Case Study: The Central Valley Book 160
 Gray Originals 161

Chapter 12: Duotones and Photographic Reproduction 165
 Halftone Reproduction in Black
 and White Photography 165
 A Duotone Primer 166
 Duotone Curves 167
 Duotone Examples 168

Part 5: Color Spaces, Printing, and Archiving

Chapter 13: Color Management 175
 An Overview of Color Management 175
 Picture to Print with Color Management 177
 Color Management in Practice 178

Chapter 14: Printing—A New World 181
 Printing in the Digital Age 181
 Direct Digital Printing Technologies 182
 A File Prepared for Printing 183
 Printing and Resolution 184
 Printing Software 186
 To Profile a Printer 188
 Making the Print Look Right 188
 Digital Black and White Printing 192
 Prepress Considerations 196

Chapter 15: What to Do with Your Images 199
 Archiving, Storing, Cataloging, and Retrieving 199
 Galleries: Real and Virtual 204
 Outreach, Ownership, and Sharing 206

Part 6: A Photographer’s Digital Journey

Chapter 16: With a New Eye 213
 “Elusive Gigabyte of Light” by Stephen Johnson 213

Chapter 17: Examples Portfolio 221
 Realistic, Restrained Color in Acadia 221
 Sensor Matched to Scene at Arches 222
 Silicon and Infrared at Denali 224
 Motion and the Scanning Camera: Hawaii Volcanoes 226
 Worth the Climb: Mt. St. Helens 228
 On the Digital Trail 230

Part 7: Photography, Art, and the Future

Chapter 18: Making Art 235
 Art and Fear 235
 Passion and Commitment 236
 Photography and Magic 237
 Photographic Composition 238
 About Art 241

Chapter 19: Photography and Truth 243
 Imaging Ethics in a Digital World 243
 Photography and History 244
 The Nature of the Photographic Process 249
 Two Deceptions 252
 Ownership, Copyright, and Theft
 of Intellectual Property 257
 Professional Respect and the Value of Your Work 261
 Going Forward 262

Chapter 20: Empowerment in the Digital Age 265
 Photography and Conservation 266
 Photography and Social Concerns 269
 Environmental Work 272
 Teaching Photography in the Digital Age 274

Chapter 21: From the Digital Stone Age Onward 277
 What We Still Need 277
 A New Realism 278
 Aesthetics: A Personal Perspective 280
 Moving Toward Our Perceptual Experience 284

Appendix

 A High-Resolution Digital Archive Project 288
 Paradoxes of Art, Science, and Photography 290
 Camera Megapixels and Print Size 292
 Film Size and Scanner Resolutions 293
 Selected Reading 294
 Software and Internet Resources 295
 A Glossary of Digital Terms 296

Index 298

About the Author 305
Color Space Plots in Chromix ColorThink software.

- Top: Epson R2400 printer on Hahnemühle Museum Etching.
- Middle: Adobe RGB.
- Bottom: ProPhoto RGB.
Chapter 13: Color Management

Color is my day-long obsession, joy and torment.
—Claude Monet

Color management could also be known as color confusion, marketing hyperbole, or the black hole. There has been much oversimplification and much over-complication of this subject. In fact, done carefully and with reasonable expectations, managing your digital color workflow can make a tremendous positive difference in the overall usability of a digital photography system.

An Overview of Color Management

Color management is mostly about describing the color capabilities of different devices and linking them together with a language of color that translates from one to another. This is a critical translation; otherwise, the color capabilities of one device will simply send undefined colors to other devices, which will in turn print or display however it happens to print or display, without any control other than the manufacturer’s assumptions and current device conditions. That is often the case when you have no color management in play, and the color is understandably out of control.

Color Spaces
A color space is a range of color definitions modeling human color perception, and color space can be interchanged, displayed, and printed with some predictability. These ranges of color can be modeled, plotted in various ways, and compared. Color spaces are defined in the Lab colorspace, a model of color definitions that maps human color perception into measurable form.

Color Profiles
Profiles are descriptions of the color capabilities of a real-world device such as a camera, display, scanner, or printer. The Lab values in these descriptions are used by imaging software and provide the key for translating color information from one device to another. These are often referred to as ICC Profiles (a commonly accepted profile format), meaning they conform to the standards of the International Color Consortium, a group of imaging company representatives who work on color standards, such as defining the information in a profile.

Color Management Module (CMM)
The Color Management Module is the software engine that does the math translation from one profile to another. This translates image color from one set of color capabilities (color gamut) to another device’s color capabilities.

Displays
Your portal into your digital photo world is the computer display on which you view your image. It needs to be at least in a known state (characterized), and preferably a calibrated state so that the colors it displays provide a good representation of the digital file.

Many displays are simply in whatever state they happen to be, or have been adjusted to look “good” without any external reference as to how that relates to the signal being sent by the computer. Looking good may not be a correct representation of the file, and therefore using that skewed screen as a source of visual information for photo editing and printing can be very problematic.

Many printer companies complain that their single most common customer support call is the fact that prints don’t look like the screen. The printer will print the data, in whatever state it’s in, and without color management. No other part of the system knows what the viewer is seeing on the computer screen. A calibrated display and a good display profile addresses this issue.
Editing Spaces

Editing spaces refers to the set of color definitions used by Photoshop to define precise spectral meaning of the colors within the image. They are not definitions of a device, but rather a set of color definition parameters within which to operate. Editing profiles need to be well-behaved and well-suited for editing images, with uniform tone response for each channel, and also gray balanced, so that equal amounts of RGB make a neutral gray. Some of these spaces also have wider gamuts, so you aren’t limited to the gamut of your display or a particular output device when editing your images. A common editing space that meets many needs is Adobe RGB (1998), and other such spaces include sRGB, ColorMatch RGB, ECI RGB, and ProPhoto RGB.

Device Profiles

Profiles that describe the behavior and capabilities of real devices are called device profiles. Although they have different roles, they can be cross-assigned, leading to flexibility and confusion.

Source Profile: a description of the color capabilities of the device that the image is coming from, such as a scanner or digital camera. Scanners can profile well, but digital cameras are difficult to profile because of the many variables involved in customizing the making of photographs.

Display Profile: a description of the color capabilities of the computer display in its current condition. This profile describes what color will look like to the users as they look at the screen. Our judgement of the display colors can be influenced by ambient lighting conditions, the color of the viewer’s clothing, and colorful desktops that skew color perception.

Destination Profile: a description of the color capabilities of the device that the image is being printed to, such as an inkjet printer. This description is very specific, and it requires knowing the printer, paper, ink type, and settings.

Soft-Proof: an image processed by Photoshop or other application and displayed on the computer display that attempts to imitate how the print will look when finished. CMYK soft-proofing for prepress has been used effectively for many years. RGB soft-proofing to simulate desktop printer requiring RGB data has proven more challenging.
Picture to Print with Color Management

This image’s colors don’t fit within the printer’s capabilities—therefore, they must be transformed into colors the printer can produce. That is largely the task of printer color management.

These three graphics show:
1. The photograph’s color plotted in the Adobe RGB color space.
2. Those same points shown with the Epson 2200 printer space.
3. The movement needed to transform the image color outside the gamut of colors into color that can be printed by this printer, with this paper.

This gamut mapping is the challenge, purpose, and opportunity of color management.

The Lab color space graphics:
The L axis is luminance, or brightness, which goes from black at bottom to white at top; the B axis ranges from yellow to blue; and the A axis from magenta to cyan.
Color Management in Practice

Color management can get pretty dense and theoretical quickly. All of this effort is simply trying to describe what these devices can do, and how to transform color between them. A profile of any real-world machine is a device profile, but I find it useful to break them down to distinguish how they are used.

Source Profiles
The Source Profile refers to a profile describing the color capabilities of the device which produced the file.

✦ Scanners: good scanner makers provide a basic profile of their scanner. These profiles take into account the lens, lamp, and software producing the scan. Custom profiles of scanners can be made with color calibration targets like the IT8 printed on color paper, transparency, and negative film. These targets are scanned in a raw mode on the scanner. Color profile–making software is then used to read the file, determine how it is different from what it knows is on the target, and create a new source profile. This has the potential to be a more accurate profile than a more generic profile supplied by the manufacturer.

✦ Cameras: cameras are hard to profile. There are many variables in play, such as light conditions, optics, and huge contrast range differences between photographs and the user’s taste. Many cameras are now tagging their pictures with a display profile like sRGB or a color working space like Adobe RGB. Neither of these are camera profiles and should not be used as such. Some cameras use internal source profiles, and then translate them into standard color spaces.

Display Profiles
Display profile refers to a description of the capabilities and current condition of your display.

✦ Visual characterization with software: Apple Display Calibrator and Adobe Gamma are visual calibration software tools that use your eyes and judgment to adjust the display and create a profile. They should be used if there is no hardware solution available.

✦ Display calibration with hardware and software: packages with sensor and software are available from a variety of makers.

✦ Integrated display/calibration: the ultimate hardware/software solution is a package with software and sensor integrated into the display by the maker.

✦ The Internet: the sRGB color space was created in an attempt to find a colorspace that would describe generic uncalibrated displays on a PC. It is a reasonable assumption for web page viewing conditions; therefore, files transformed into that space with an sRGB profile embedded should look reasonable on most web browsers and screens that match the assumption.
Chapter 13: Color Management

Printer Profiles
A printer profile is a description of how your printer prints color with the current ink, settings, and paper. These can come from various sources, or you can make your own with the proper hardware and software.

✦ Supplied profiles: supplied by the manufacturer for their printer, paper, ink, or software. These are generic to model, and they vary in quality. Free.
✦ Custom generic profiles: supplied by third-party profile producers for specific printer types. These are generic to model and they vary in quality.
✦ Custom profiles: a profile of your specific printer made by a service. These are specific to your printer. If you follow procedures carefully, they can be quite good.
✦ Your own custom profiles: your own custom-made profiles with your hardware and software. If done correctly, these are likely to be the highest quality profiles. (See “To Profile a Printer” in Chapter 14.)

Rendering Intents
When color has to be translated between two different devices with different color capabilities, the CMM (color management module) has to make decisions as to how to map color into the different space. Some color from the source may fit easily within the color gamut of the output device, but others may not. The control of how this mapping is done is called rendering intent. There are many strategies for rendering out-of-gamut color, but the two most commonly used variations are these:

✦ Perceptual rendering: attempts to preserve color relationships so that visual relationships remain. For example, suppose there are two close reds that are noticeably different, but one is in the gamut of the printer and one is not. With perceptual rendering both would likely be changed, moving the out-of-gamut color into the space, while moving the red that was in-gamut so as to maintain a visual difference between the two.
✦ Relative Colormetric rendering: attempts move only the colors that are out-of-gamut into the color capabilities of the device. Color that is in-gamut should, in theory, be left alone.

In Practice
Implementing a color-managed workflow requires integrated use of these capabilities. Education is required for the people (usually us) responsible for managing the color, together with a vigorous calibration enforcement.

1. Your display must be calibrated regularly, preferably with hardware.
2. You should know where the file came from and transform the file from its source space to your Photoshop working space.
3. Print to your printer’s profile, either by having Photoshop manage the color (preferred), or by using the manufacturer’s color workflow. Be very careful not to do both. (See “Printing Software” in Chapter 14.)
This practical guide from master photographer Stephen Johnson chronicles his own expedition on the bleeding edge of digital photography's evolving frontier. He explores a wide range of subjects, from basic camera techniques, to the ethical issues of digital imaging, to technological innovations for the future. What sets this book apart is its approach and execution. This isn’t a Photoshop book, although Photoshop is part of the story. It’s a book that reflects a master teacher and photographer’s lifetime of showing others how to understand and take great photographs.

Stephen Johnson on Digital Photography brings a unique, passionate, and holistic method of teaching to students of photography. Johnson conveys a master’s understanding of how any level of “taking pictures” involves a balance of science, craft, and artistic expression. No other book offers the knowledge and background of its author with this breadth of coverage, all in a concise and highly accessible format.

Stephen Johnson is internationally recognized as a digital photography pioneer. His photographs are part of the collections of many institutions, including the J. Paul Getty Museum, the Oakland Museum, the City of New York, the U.S. State Department, and the National Park Service. With a New Eye, his digital national parks project, literally made photographic history. His work in digital photography is renowned. His consulting has influenced products at the core of digital imaging for such clients as Adobe Systems, Apple Computer, Eastman Kodak, Epson, Foveon, and Hewlett-Packard. His work with Adobe includes consulting on the development of Photoshop since 1992 and the creation of Photoshop’s Duotone feature.

In 1999, Folio magazine declared the publication of Johnson’s digital photographs in LIFE magazine to be one of the “Top 15 Critical Events” in magazine publishing in the 20th century. He was named to the Photoshop Hall of Fame in 2003 for his achievements in Art.

Johnson is “…the preeminent digital landscape photographer.” He creates images “unlike anything possible on film....” His prints are “remarkably vibrant, and the details seem to jump out from the image.”

—Photo Insider